Fe b 20 09 Kernel Conjugate Gradient is Universally Consistent
نویسندگان
چکیده
We study the statistical consistency of conjugate gradient applied to a bounded regression learning problem seen as an inverse problem defined in a reproducing kernel Hilbert space. This approach leads to an estimator that stands out of the well-known classical approaches, as it is not defined as the solution of a global cost minimization procedure over a fixed model nor is it a linear estimator. Instead, approximate solutions are constructed by projections onto a nested set of data-dependent subspaces. We study two empirical stopping rules that lead to universally consistent estimators provided the kernel is universal. As conjugate gradient is equivalent to Partial Least Squares, we therefore obtain consistency results for Kernel Partial Least Squares Regression.
منابع مشابه
Kernel Conjugate Gradient is Universally Consistent
We study the statistical consistency of conjugate gradient applied to a bounded regression learning problem seen as an inverse problem defined in a reproducing kernel Hilbert space. This approach leads to an estimator that stands out of the well-known classical approaches, as it is not defined as the solution of a global cost minimization procedure over a fixed model nor is it a linear estimato...
متن کاملKernel Partial Least Squares is Universally Consistent
We prove the statistical consistency of kernel Partial Least Squares Regression applied to a bounded regression learning problem on a reproducing kernel Hilbert space. Partial Least Squares stands out of well-known classical approaches as e.g. Ridge Regression or Principal Components Regression, as it is not defined as the solution of a global cost minimization procedure over a fixed model nor ...
متن کاملGlobal conjugate gradient method for solving large general Sylvester matrix equation
In this paper, an iterative method is proposed for solving large general Sylvester matrix equation $AXB+CXD = E$, where $A in R^{ntimes n}$ , $C in R^{ntimes n}$ , $B in R^{stimes s}$ and $D in R^{stimes s}$ are given matrices and $X in R^{stimes s}$ is the unknown matrix. We present a global conjugate gradient (GL-CG) algo- rithm for solving linear system of equations with multiple right-han...
متن کاملA conjugate gradient based method for Decision Neural Network training
Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...
متن کاملFe b 20 09 Space of Ricci flows ( I )
In this paper, we study the moduli spaces of noncollapsed Ricci flow solutions with bounded energy and scalar curvature. We show a weak compactness theorem for such moduli spaces and apply it to study isoperimetric constant control, Kähler Ricci flow and moduli space of gradient shrinking solitons.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009